پایه تحصیلی
درس
وضعیت پاسخ

این 5 تا سوال رو از این مبحث جواب بده و خودت رو امتحان کن!

تابع f در $x = 2$ مشتق‌پذیر و $\mathop {\lim }\limits_{h \to 0} \frac{{f(2 - h) - 3}}{h} = 4$ است. مقدار مشتق تابع $y = {f^2}(\frac{4}{x})$ در نقطۀ $x = 2$ چقدر است؟

تابع $f(x) = [\frac{a}{{3x + 2}}]$ در اعداد حقیقی مثبت مشتق‌پذیر است. اگر a مثبت باشد، حدود a کدام است؟

اگر نقطه M(x,y) را روی نمودار $y=\sqrt{x^۴+x^۲+۱}$ در نظر بگیریم، آهنگ تغییر فاصله نقطه ی M از مبدا مختصات نسبت به تغییر x در نقطه $x=\sqrt۳$ کدام است؟ 

نمودار تابع $f(x)=\sqrt[۳]{x^{۲}}$ به صورت مقابل است. نمودار تابع مشتق به کدام صورت است؟

به موازات کدام خط می‌توانیم مماس بر نمودار تابع $y=۲\sin^۲x+۳$ رسم کنیم؟

1 از 5

مثالي از تابع پيوسته و غير مشتق پذير در حسابان دوازدهم

ضابطه يا نمودار تابعي مثال بزنيد که در تمام نقاط از دامنه اش پيوسته و در هيچ نقطه از آن مشتق پذير نباشد
جواب این سوال رو می‌دونی؟

پاسخ‌ها

محبوب‌ترین
جدیدترین
بیشترین پاسخ
هم‌‌درس
پاسخ هوش مصنوعی

تابع وایرشتراس

یک مثال معروف از تابعی که در تمام نقاط پیوسته است اما در هیچ نقطه‌ای مشتق‌پذیر نیست، تابع وایرشتراس است.

ضابطه این تابع به صورت زیر است:

f(x)=n=0ancos(bnπx)

در این تابع، 0<a<1 و ab>1+32π. این تابع در تمام نقاط پیوسته است اما در هیچ نقطه‌ای مشتق‌پذیر نیست.

یادآوری ایمنی: هنگام کار با توابع ریاضی، دقت کنید که مفاهیم پیوستگی و مشتق‌پذیری را به درستی درک کرده باشید.

هم‌درس
گزارش

تو چند ماه گذشته مطالعه‌ت رشد داشته یا افت؟

با نصب هم‌درس، روند مطالعه‌ت رو بسنج و بهترش کن!
صفحه 1 از 1

دیگر محتواهای حسابان 2 و پایه پایه دوازدهم

پر بازدیدترین مطالب مرتبط

فیلتر کردن