راهنمایی کوتاه: این عبارت ریاضی به نظر میرسد نمادگذاری درستی ندارد و نیاز به بازنویسی دارد.
گامبهگام:
- ۱) ابتدا عبارت را بررسی میکنیم: ∫₀^∞ 5²46 dx²
- ۲) نماد dx² در انتگرالگیری استاندارد صحیح نیست. معمولاً انتگرال نسبت به یک متغیر (مثل x) گرفته میشود و به صورت dx نوشته میشود.
- ۳) احتمالاً منظور از dx² این است که نسبت به x² انتگرال بگیریم، اما این روش استانداردی نیست.
- ۴) عدد 5²46 نیز مبهم است: آیا منظور 5² × 46 است یا عدد 2546؟
- ۵) اگر فرض کنیم منظور ∫₀^∞ (25 × 46) dx باشد، آنگاه یک انتگرال ساده از یک ثابت خواهیم داشت.
- ۶) اما انتگرال یک ثابت از 0 تا بینهایت، خود بینهایت میشود (واگرا است).
پاسخ نهایی: این عبارت به شکل فعلی قابل محاسبه نیست زیرا نمادگذاری ریاضی صحیحی ندارد. برای محاسبه انتگرال، باید آن را به شکل استاندارد بازنویسی کنیم.
مثال مشابه: انتگرال صحیح به این شکل است: ∫₀^∞ 3 dx = [3x]₀^∞ که بینهایت میشود.
اگر میخواهی بیشتر یاد بگیری: در ریاضیات پایههای بالاتر، انتگرالگیری را با نماد استاندارد ∫ f(x) dx یاد میگیری. ابتدا باید تابع f(x) را به درستی بنویسی و سپس نسبت به متغیر x انتگرال بگیری.